Performance Analysis of Speech Recognition Software

نویسندگان

  • Chunrong Lai
  • Shih-Lien Lu
  • Qingwei Zhao
چکیده

This paper characterizes the behavior of a speaker-independent large vocabulary continuous speech recognition (LVCSR) system. This system is used to dictate Chinese (Mandarin) utterances of different speakers and achieves a word recognition accuracies of 85%~96% depending on the cleanness of input signals and the complexity of the spoken sentences. Several methods are used to characterize its processing behavior. First, the same system is run on different Intel platforms and their performance measured. Second, we use an Intel performance monitoring toolset – Vtune to read hardware counters build in the CPU. These counters measured the instruction distribution as well as processor utilization rate. Third, a full platform simulator SoftSDV together with a cache simulator is used to study its memory behavior in more detail. We find this software system to have a large memory working set. Data access to first level cache has good locality. There are two groups of memory usage displacing each other in the second level cache. Second level cache miss rate declines much fast after the size increases beyond 8MB. We also identify a few instructions that cause a larger number of level-2 cache misses. Using software prefetching we improve the overall performance by an average of 7%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Correlation between Auditory Spectral Resolution and Speech Perception in Children with Cochlear Implants

Background: Variability in speech performance is a major concern for children with cochlear implants (CIs). Spectral resolution is an important acoustic component in speech perception. Considerable variability and limitations of spectral resolution in children with CIs may lead to individual differences in speech performance. The aim of this study was to assess the correlation between auditory ...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002